Closing Tues. (Nov. $28^{\text {th }}$): HW 4.3
Exam 2 is Tuesday!!!
covers 3.1-3.6, 3.9-3.10, 10.2, 4.1
Expect: 6 pages
Page 1: Find Deriv./Slope/Tangent
Page 2-4: Implicit, Parametric, Linear Approx., Abs. Max/Min
Page 5-6: Related Rates (Expect to see at least one picture/question directly HW).

Office Hours today: 1:30-3:00 COM B-006

Entry Task:
Find the abs. max and min of
$f(x)=x^{3} e^{-x}$ on $[-1,5]$.

4.3 Classifying Critical Points (Local Max/Min)

Recall:

$\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{y}^{\prime}=\boldsymbol{f}^{\prime}(\boldsymbol{x})$
horiz. tangent	zero
increasing	positive
decreasing	negative
vertical tangent, sharp corner, or not continuous	does not exist

Key, big, essential observation
(First derivative test)
If $x=a$ is a critical number for $f(x)$ AND
if $f^{\prime}(x)$ changes from...

1. ...positive to negative, then a local maximum occurs at $x=a$.
2. ...negative to positive, then a local minimum occurs at $x=a$.

Example: Find and classify the critical

 numbers for$$
y=x^{3}+3 x^{2}-72 x
$$

Example: Find and classify the critical

 numbers for$$
y=x^{4}-2 x^{3}
$$

Example: Find and classify the critical

 numbers for$$
y=x^{2 / 3}
$$

Example: Find and classify the critical numbers for

$$
y=\frac{x^{3}}{x^{2}-1}
$$

The $\mathbf{2}^{\text {nd }}$ Derivative

$$
y^{\prime \prime}=f^{\prime \prime}(x)=\frac{d}{d x}\left(f^{\prime}(x)\right)
$$

$=$ "rate of change of first derivative"
Terminology
If $f^{\prime \prime}(x)$ is positive, then the slope of $f(x)$ is increasing and we say $f(x)$ is concave up.

If $f^{\prime \prime}(x)$ is negative, then the slope of $f(x)$ is decreasing and we say $f(x)$ is concave down.

A point in the domain of the function at which the concavity changes is called an inflection point.

Example: Find all inflection points and indicate where function is
concave up and concave down for

$$
y=x^{4}-2 x^{3}
$$

Clever Observation

(Second Derivative Test)
If $x=a$ is a critical number for $f(x)$
AND

1. if $f^{\prime \prime}(a)$ is positive (CCU), then a local min occurs at $x=a$.
2. if $f^{\prime \prime}(a)$ is negative (CCU), then a local max occurs at $x=a$.
3. if $f^{\prime \prime}(a)=0$,
then we say the $2^{\text {nd }}$ deriv. test is inconclusive (need other method)

Example: Find and classify the critical

 numbers for$$
y=2+2 x^{2}-x^{4}
$$

(use the $2^{\text {nd }}$ deriv. test)

